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Abstract
A class of strongly coupled degenerate parabolic system is considered. Sufficient

conditions will be given to show that bounded weak solutions are Hölder continuous
everywhere. The general theory will be applied to a generalized porous media type
Shigesada-Kawasaki-Teramoto model in population dynamics.

1 Introduction

In the present paper we study the Hölder continuity of bounded weak solutions to nonlinear
parabolic systems of m equations (m ≥ 2) given by

ut = div(a(x, t, u)∇u) + f(x, t, u), (1.1)

in a domain Q = Ω × (0, T ) ⊂ IRN+1, with Ω being an open subset of IRN , N ≥ 1. The
vector valued functions u, f take values in IRm, m ≥ 1. ∇u denotes the spatial derivative of
u. Here, a(x, t, u) = (Aαβ

ij ) is a tensor in Hom(IRnm, IRnm).

A weak solution u to (1.1) is a function u ∈ W 1,0
2 (Q, IRm) such that∫∫

Q
[−uφt + a(x, t, u)∇u∇φ] dz =

∫∫
Q

f(x, t, u)φ dz

for all φ ∈ C1
c (Q, IRm). Here, we write dz = dxdt.

The problem of regularity of bounded solutions to such systems is a long-standing prob-
lem, which has just been intensively studied in recent years. For systems with regular
diffusion part a(x, t, u), partial regularity results were established by Giaquinta and Struwe
in [4]. However, the question of whether bounded weak solutions are Hölder continuous
everywhere was only answered in very few situations under either a severe restriction on the
dimension N of the domain Ω, N ≤ 2, as in [6], or special structural conditions on a(x, t, u)
for arbitrary N (see [10, 13]).

To the best of our knowledge, such questions have not been addressed for systems
like (1.1) having certain degeneracy in the tensor a. Important examples include cross
diffusion systems modelling phenomena in porous media. In contrast to the single equation
case (see [9]), one cannot expect in general that bounded weak solutions of (1.1) will be
Hölder continuous everywhere. In a recent work [11], we investigated the question of partial
regularity of (1.1) having the following structure conditions.
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(A.1) There exists a C1 map g : IRm → IRm, with Φ(u) = ∇ug(u), such that for some
positive constants λ, Λ > 0 there hold

a(u)∇u · ∇u ≥ λ|∇g(u)|2, |a(u)∇u| ≤ Λ|Φ(u)||∇g(u)|.

(A.2) (Degeneracy condition) Φ(0) = 0. There exist positive constants C1, C2 such that

C1(|Φ(u)|+ |Φ(v)|)|u− v| ≤ |g(u)− g(v)| ≤ C2(|Φ(u)|+ |Φ(v)|)|u− v|.

(A.3) (Comparability condition) For any β ∈ (0, 1), there exist constants C1(β), C2(β)
such that if u, v ∈ IRm and β|u| ≤ |v| ≤ |u|, then C1(β)|Φ(u)| ≤ |Φ(v)| ≤ C2(β)|Φ(u)|.

(A.4) (Continuity condition) Φ(u) is invertible for u 6= 0. The map a(u)Φ(u)−1 is contin-
uous on IRm\{0}. Moreover, there exists a monotone nondecreasing concave function
ω : [0,∞) → [0,∞) such that ω(0) = 0, ω is continuous at 0, and

|a(v)Φ(v)−1 − a(u)Φ(u)−1| ≤ (|Φ(u)|+ |Φ(v)|)ω(|u− v|2), (1.2)

|Φ(u)− Φ(v)| ≤ (|Φ(u)|+ |Φ(v)|)ω(|u− v|2) (1.3)

for all u, v ∈ IRm.

Introducing the so called A-heat approximation method, we were able to extend the
partial regularity results in [4] to the degenerate system (1.1). The main result of [11] is
the following characterization of the regular sets of bounded weak solutions.

Theorem 1.1 ([11]) Let u be a bounded weak solution to (1.1) satisfying (A.1)-(A.4). Set

Reg(u) = {(x, t) ∈ Ω× (0, T ) : u is Hölder continuous in a neighborhood of (x, t)}

and Sing(u) = Ω× (0, T )\Reg(u). Then Sing(u) ⊆ Σ1
⋃

Σ2, where

Σ1 = {(x, t) ∈ Ω× (0, T ) : lim inf
R→0

|(u)QR(x,t)| = 0},

Σ2 = {(x, t) ∈ Ω× (0, T ) : lim inf
R→0

∫∫
QR

|u− (u)QR(x,t)|2 dz > 0}.

Here, for each R > 0, QR(x, t) = BR(x)× (t−R2, t) and (u)QR(x,t) =
∫∫

QR(x,t)
u dz.

Moreover, Hn(Σ2) = 0, where Hn is the n-dimensional Hausdorff measure.

Obviously, whether bounded weak solutions are Hölder continuous everywhere, that is
Sing(u) = ∅, is an important question and still remains open. There are no previous results
concerning everywhere regularity for general systems of the form (1.1). The results and
methods in aforementioned works [6, 10, 13] for regular systems cannot apply here. New
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techniques and additional structure conditions will be needed. This will be the main goal
of this paper.

We begin our paper, in Section 3, by considering systems like (1.1) of m equations (m ≥
2) and giving sufficient conditions (in addition to (A.1)-(A.4)) that guarantee everywhere
regularity of bounded weak solutions. Roughly speaking, our method relies on the key
assumption on the existence of a function H(u). This function links the structures of the
equations in a way that we can derive certain regularity of H(u), which is regarded as a
function in (x, t). Such regularity of H(u) will be exploited later to study that of u. This
technique was first introduced by us in [10] to handle the regular cases. Here, we make
use of the scaled parabolic cylinders in order to reflect the degeneracy Φ(u). This idea was
originally introduced in [1] to deal with scalar p-Laplacian equations. However, the case
of degenerate systems needs much more sophisticated techniques. Another difficulty arises
as the L2 estimate for ∇u, derived by Giaquinta and Struwe in [4, page 443] for regular
cases, is no longer available here to obtain the smallness of the average of the deviation
|u− (u)QR

|2 on QR. Direct estimates of these quantities must be rediscovered. In addition,
we must also show that the system is averagely not too degenerate in certain scaled cylinder
so that the component Σ1 of the singular set is empty.

We demonstrate our general theory by considering a degenerate Shigesada-Kawasaki-
Teramoto (SKT) model arising in population dynamics. Here, we incorporate the porous
media type diffusion into the well studied regular (SKT) systems. We will give sufficient
conditions on the parameters of this system such that a function H can be found; and
the results of Section 3 are applicable. The existence of a function H for general regular
(SKT) systems were studied in [10]. Our degenerate system (SKT) obviously necessitates
a different H, but some calculations in [10] are reusable here. The new choice of H in this
work also greatly simplifies many complicated calculations in [10].

We would like to remark that we assume no presence of ∇u in the lower order term f
in (1.1) for the sake of simplicity. In fact, in [11] and this present work, we could allow f
to depend on ∇u, and to have growth like ε|Φ(u)|2|∇u|2 for sufficiently small ε > 0. The
proof for this case is similar, with an exception of some minor technical modifications.

The paper is organized as follows. In Section 2, we introduce our notations, hypotheses
and main theorems. We study the general system (1.1) in Section 3. Section 4 is devoted
to the degenerate (SKT) system and concludes our paper.

Acknowledgement: The authors would like to thank the referees for their comments
and suggestions.

2 Notations and main results

Throughout this paper, Ω is a bounded domain in IRN . For a scalar function h(x, t), with
(x, t) ∈ IRN+1, its spatial (resp. temporal) derivative with respect to the x (resp. t)variable
is denoted by ∇h (resp. ∂h/∂t or ht). If u = (u1, . . . , um) is a vector valued function, then
∇u = (∇u1, . . . ,∇um). If H is a function in u, then Hu = ∇uH = (∂u1H, . . . , ∂umH).

For a given set X ⊂ IRn we denote by |X| its n dimensional Lebesgue measure. We
write BR(x0) = {x ∈ IRn : |x − x0| < R}, the ball centered at x0 with radius R. For a
measurable bounded X, we denote the average of a given measurable function h over X by
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hX = 1
|X|
∫
X h(x)dx.

In our proof, C,C1, . . . will denote various constants whose values change from line to
line but are independent of the solutions in question. For a, b ≥ 0, we also write a ∼ b if
there are positive constants C1, C2 such that C1a ≤ b ≤ C2a.

In the sequel, we first consider a bounded weak solution u to (1.1) on Ω× (0, T ) and the
following conditions.

(H.1) There exists a C2 real function H(u) defined on a neighborhood of the range of the
solution u. Moreover, for some γ ≥ 2 and |u| small, we have H(u) ∼ |u|γ .

(H.2) There are positive constants λ1, λ2, and λ3 such that

HT
u a(u)∇u∇H ≥ λ1|Φ(u)|2|∇H|2,

∇HT
u a(u)∇u ≥ λ2|∇g(u)|2,

|HT
u a(u)∇u| ≤ λ3|Φ(u)|2|∇H|.

We are now in a position to state our first theorem on the everywhere regularity.

Theorem 2.1 Given the conditions (A.1)-(A.4) and (H.1)-(H.2), bounded weak solutions
to (1.1) are Hölder continuous on Ω× (0, T ).

To illustrate this general result, we then study a system of 2 equations

ut = ∇(P̄u(u, v)∇u + P̄v(u, v)∇v) + F (u, v),
vt = ∇(Q̄u(u, v)∇u + Q̄v(u, v)∇v) + G(u, v),

(2.1)

with the following degenerate structure for some α > 0:

P̄u = a11u
α + a12v

α, P̄v = b11u
α,

Q̄v = a21u
α + a22v

α, Q̄u = b22v
α.

(2.2)

In this form, (2.1) is a generalized version of the well known Shigesada-Kawasaki-Teramoto
model in population dynamics (see [12]). By allowing the presence of powers of u, v and
dropping random diffusion terms, we take into account porous media type diffusion effects.
The system becomes degenerate and has not been ever discussed in existing literature.

In applications, u, v represent population densities of the species under investigation,
and thus only positive solutions are of interest. Our second result deals with the regularity
of these positive weak solutions.

Theorem 2.2 Assume α ≥ 1/2 and the following conditions on the coefficients of (2.1)

a11 > a21, a22 > a12, (a11 − a21)(a22 − a12) > b11b22, (2.3)

min{2a12a22, 2a11a21} ≥ max{b11(a11 − a21), b22(a22 − a12)}. (2.4)

If (u, v) is a positive bounded weak solution to (2.1), then (u, v) is Hölder continuous
everywhere.
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3 The general case

We give the proof of Theorem 2.1 in this section. For the sake of simplicity, we will assume
throughout that f(x, t, u) ≡ 0. The presence of this term would cause no major difficulties.

By translation, we will assume that (x0, t0) = (0, 0). Fix an ε ∈ (0, 2) and sufficiently
small R0 > 0. We consider the cylinder

Q(2R0, R
2−ε
0 ) = B2R0(0)× [−R2−ε

0 , 0] ⊆ ΩT .

Given ρ > 0, we will determine the positive constants θ and δ ∈ (0, 1) and construct the
following sequences:

Rn =
R0

θn
, µ0 = sup

Q(2R0,R2−ε
0 )

H(u(x, t)), µn+1 = max{δµn, θRε
n},

Φµn = sup{|Φ(u)| : H(u) ≤ µn}, Qn = BRn(0)× [−Φ−2
µn

R2
n, 0].

We also define the following function on Qn:

w(x, t) := log
(

µn

N(u)

)
, with N(u) =

1
ρ
(µn −H(u)).

For each n, let Q0
n = {(x, t) ∈ Qn : w(x, t)+ = 0}. We consider the following two

alternatives.

(A) For all integers n, we have

|Q0
n| > ρ|Qn|. (3.1)

(B) For some integer n, we have

|Q0
n| ≤ ρ|Qn|. (3.2)

Let us briefly explain how Theorem 2.1 follows from these two alternatives.
Given any ε > 0, we will show that ρ = ρ(ε) > 0 can be chosen such that if (3.2) holds

for some (fixed) n, then there are fixed constants µ, β > 0 such that

sup
QR

|u| ≤ µ,

∫∫
QR

|u− uQR
|2 dz ≤ εµ2 and |uQR

| ≥ βµ, R = Rn/2. (3.3)

The Hölder continuity of u then follows immediately from (3.3) and Theorem 1.1.
Otherwise, for such ρ, we suppose that (3.1) holds for all integers n. We will show that

the followings are true for all integers n.

H(u(x, t)) ≤ µn ∀(x, t) ∈ Qn, (3.4)

Qn+1 ⊆ Qn. (3.5)
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Arguing as in the proof of [7, Lemma 5.8], we can see that the sequence {µn} satisfies
µn ≤ C(Rn/R0)α for some α > 0 and some constant C depending only on θ, R0, µ0. Due
to (3.4), H(u(x, t)) is Hölder continuous. The assumption (H.1) then gives the Hölder
continuity of u(x, t).

Remark 3.1 If H(u) ≥ σµn for some σ > 0, then there is constant C = C(σ) > 0 such
that |Φ(u)| ≥ CΦµn . Indeed, let Φµn = |Φ(u0)| for some u0 such that H(u0) ≤ µn. (H.1)
implies that |u|γ ≥ C1(σ)µn and |u0|γ ≤ C2µn. Hence, |u0| ≤ C3(σ)|u| for some C3(σ).
This and (A.3) give Φµn ≤ C(σ)|Φ(u)|.

Alternative (A): First of all, by scaling and assuming that Φµ0 ≥ CRε
0, we can make

Q0 ⊆ Q(2R0, R
2−ε
0 ) so that (3.4) and (3.5) are verified for n = 0. Moreover, we can also

assume that µn ≤ 1 for all n.
Assume that (3.4) holds for some integer n. Let R = Rn/4 and η be a function with

compact support in QR = BR × [−Φ−2
µn

R2, 0].
We test the equation of ui by Huiη/N and add the results to get

∫
Ω

∂w

∂t
η dx +

∫
Ω

[
HT

u a(u)∇u

N
∇η +

∇HT
u a(u)∇u

N
η +

HT
u a(u)∇u∇H

N2
η

]
dx = 0. (3.6)

If η ≥ 0, then (H.2) and the above imply

∫
Ω

∂w

∂t
η dx +

∫
Ω

HT
u a(u)∇u

N
∇η dx ≤ 0. (3.7)

We first show that ‖w‖∞,QR
can be estimated in terms of ‖w‖2,Q2R

. By (H.2), we have

∣∣∣∣∣HT
u a(u)∇u

N

∣∣∣∣∣ ≤ λ3|Φ(u)|2|∇w|, HT
u a(u)∇u

N
∇w =

HT
u a(u)∇u∇H

N2
≥ λ1|Φ(u)|2|∇w|2.

We then see that the assumptions of [9, Lemma 3.3] are satisfied. Moreover, on the
set w+ > 0 we have H > (1 − ρ)µn. Remark 3.1 asserts that |Φ(u)| ≥ CΦµn on the set
w+ > 0. Furthermore, since H(u(x, t)) ≤ µn on Qn by (3.4), we have |Φ(u(x, t)| ≤ Φµn

on Qn. Hence, the comparability property (3.12) of [9, Lemma 3.4] is verified too. The
iteration argument of [9, Lemma 3.5] then gives a constant C independent of R and Φ such
that

sup
BR×[−Φ−2

µnR2,0]

w ≤ C(1 +
1

|QR|

∫∫
QR

(w+)2 dz). (3.8)

Next, we replace η by η2 in (3.6) and use (H.2) to get

∫
Ω

∂w

∂t
η2 dx +

∫
Ω
|Φ(u)|2|∇w|2η2 dx ≤ C

∫
Ω

(|Φ(u)|2|∇w|η|∇η| dx.
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Having established that |Φ(u)| ∼ Φµn on the set w+ > 0 and meas({w+ = 0}) =
meas(Q0

n) ≥ ρ|Qn| by (3.1), we can follow the proof of [9, Lemma 3.6] to show that
1

|QR|

∫∫
QR

(w+)2 dz can be bounded by a constant independent of R and Φ. By (3.8),

supBR×[−Φ−2
µnR2,0] w is also bounded by a constant, denoted by ln(C), independent of R and

Φ. From the definition of w, we easily get

H(u(x, t)) ≤ δµn, ∀(x, t) ∈ QR, (3.9)

with δ = C−ρ
C < 1 and depends only on ρ.

We now show that (3.5) is verified by a suitable choice of θ.
To proceed, we claim that there is a constant C0 = C(δ) such that Φµn ≤ C0Φµn+1 .

Indeed, let u1 be such that Φµn = |Φ(u1)| and H(u1) ≤ µn. Since µn ≤ µn+1/δ, we have
|u1|γ ≤ C1(δ)µn+1. Hence, for some C2(δ), we have u2 = C2(δ)u1 satisfying H(u2) ≤ µn+1.
This gives that |Φ(u1)| ≤ C3(δ)|Φ(u2)| ≤ C0(δ)Φµn+1 , due to (A.3). Our claim then follows.

We then determine θ such that Qn+1 ⊆ QR. This is to say, Rn+1 ≤ R = Rn/4 and
Φ−2

µn+1
R2

n+1 ≤ Φ−2
µn

R2. To this end, we need θ ≥ 4 and Φµn ≤ Φµn+1θ/4. We then choose
θ = max{4, 4C0(δ)}.

Therefore, Qn+1 ⊆ QR ⊆ Qn and (3.9) holds on Qn+1. This shows that (3.4) continues
to hold for n + 1. By induction, we conclude that (3.4) and (3.5) hold for all integers n.
Our proof is complete in this case.

Alternative B: We now have (3.2) for some n. Denote R = Rn/4 and

Q4R = Qn, QR = BR × [−Φ−2
µn

R2, 0].

It is easy to see that (3.2) yields

|Q0
n| = |{(x, t) ∈ Q4R : H ≤ (1− ρ)µn}| < ρ|Q4R|. (3.10)

We first derive Lp estimates for |∇g|. Test (1.1) with Huη to get∫
Ω

∂H

∂t
η dx +

∫
Ω

(∇Hu)T a(u)∇uη dx +
∫
Ω

HT
u a(u)∇η dx = 0. (3.11)

Let H+
k = (H(u(x, t))− k)+. Replacing η in (3.11) by H+

k η2, we easily obtain

∫∫
ΩT

∂(H+
k η)2

∂t
dz +

∫∫
ΩT

[HT
u a(u)∇u∇H+

k η2 +∇HT
u a(u)∇uH+

k η2] dz

≤
∫∫

ΩT

[HT
u a(u)∇uH+

k η∇η + (H+
k )2ηηt] dz.

By (H.2), this implies

∫∫
ΩT

[λ1|Φ(u)|2|∇H|2η2 + λ2|∇g(u)|2H+
k η2] dz ≤

∫∫
ΩT

[|Φ(u)|2|H+
k |

2|∇η|2 + |H+
k |

2|ηt|] dz.
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We now take η to be a cut-off function with respect to the scaled cylinders QR, Q4R.
We have that |∇η| ≤ 1

R and |ηt| ≤
Φ2

µn

R2 .
We then take k = (1 − 2ρ)µn and note that H+

k ≤ 2ρµn on Q4R. Moreover, because
H(u(x, t)) ≤ µn on Q4R, we have |Φ(u(x, t))| ≤ Φµn . Using the fact that |QR| ∼ Φ−2

µn
RN+2,

we obtain ∫∫
QR

|∇g(u)|2H+
k dz ≤ C(ρµn)2RN .

Let A0 := {(x, t) ∈ QR|H ≥ (1− ρ)µn}. Then (H − k)+ ≥ ρµn on A0. So,∫∫
A0

|∇g(u)|2 dz ≤ CρµnRN . (3.12)

Since H(u) ∼ |u|γ (γ ≥ 2) and H(u) ≤ µn ≤ 1 on QR, we can find C such that if
µ = (Cµn)1/γ then

sup
QR

|u(x)| ≤ µ and µn ≤ Cµ2. (3.13)

By testing (1.1) with uη, it is standard to show that∫∫
QR

|∇g(u)|2 dz ≤ Cµ2RN . (3.14)

For any subset A of QR, Hölder’s inequality gives

∫∫
A
|∇~u|q dz ≤

(∫∫
A
|∇~u|2 dz

) q
2

|A|1−
q
2 . (3.15)

Taking q = 2N
N+1 < 2, A = A0 and using (3.12), we obtain

∫∫
A0

|∇g(u)|q dz ≤ (2ρµnRN )
N

N+1 Φ
−2

N+1
µn R

N+2
N+1 = (2ρµn)

N
N+1 Φ

−2
N+1
µn RN+ 2

N+1 .

Similarly, we take A = QR\A0 in (3.15). Using (3.14) and also the fact that |A| ≤ ρ|QR|
by (3.10), we have

∫∫
QR\A0

|∇g(u)|q dz ≤ (Cµ2RN )
N

N+1 (ρΦ−2
µn

RN+2)
1

N+1 = Cρ
1

N+1 Φ
−2

N+1
µn µ

2N
N+1 RN+ 2

N+1 .

The above inequalities give us the following estimate for |∇g|:∫∫
QR

|∇g(u)|q dz ≤ C[(ρµn)
N

N+1 + ρ
1

N+1 µ
2N

N+1 ]Φ
−2

N+1
µn RN+ 2

N+1 . (3.16)

We now try to estimate the deviation |u− uQR
|. We recall the following inequality ([8,

(2.10), p.45]), with r = 1, p = 2 and m = 2N/(N + 1), for functions u with uΩ = 0
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∫
Ω

u2 dx ≤ C

∫
Ω
|∇u|

2N
N+1 dx

(∫
Ω
|u| dx

) 2
N+1

.

Let V (t) be a vector such that g(V (t)) = gBR
(u) = 1

|BR|
∫
BR

g(u)dx. The above yields

∫∫
QR

|g(u)− g(V (t))|2 dz ≤ C

∫∫
QR

|∇g(u)|q dz sup
t

(∫
BR(t)

|g(u)− gBR
(u)| dx

) 2
N+1

≤ C[(ρµn)
N

N+1 + ρ
1

N+1 µ
2N

N+1 ]Φ
−2

N+1
µn RN+ 2

N+1 (Φµnµ)
2

N+1 R
2N

N+1 .

Hence, ∫∫
QR

|g(u)− g(V (t))|2 dz ≤ ε(ρ, µn, µ)RN+2,

with ε(ρ, µn, µ) = C[(ρµn)
N

N+1 + ρ
1

N+1 µ
2N

N+1 ]µ
2

N+1 .
As |g(u)− g(V (t))| ≥ C(|Φ(u)|+ |Φ(V (t))|)|u− V (t)| and H(u) ≥ (1− ρ)µn on A0, we

have |Φ(u)| ∼ Φµn on the set A0 (see Remark 3.1). Thus,

Φ2
µn

∫∫
A0

|u− V (t)|2 dz ≤ Cε(ρ, µn, µ)RN+2.

Let uBR
= 1

|BR|
∫
BR

udx. Because
∫

Br

|u− uBR
|2 dx ≤ C

∫
Br

|u− V (t)|2 dx, we have

Φ2
µn

∫∫
QR

|u− uBR
|2 dz ≤ Φ2

µn

∫∫
A0

|u− V (t)|2 dz + Φ2
µn

∫∫
QR\A0

|u− V (t)|2 dz

≤ Cε(ρ, µn, µ)RN+2 + Φ2
µn

µ2ρ|QR|.

This gives Φ2
µn

∫∫
QR

|u− uBR
|2 dz ≤ C(ε(ρ, µn, µ) + µ2ρ)RN+2.

On the other hand, for G =
∫∫

QR

|uBR
− uQR

|2 dz, we have

G ≤ |QR| supt∈IR

∣∣∣∣∫
BR

u(x, t) dx− 1
|IR|

∫
IR

∫
BR

u(x, s) dxds

∣∣∣∣2
≤ |QR||BR|−2 supt,s∈IR

∣∣∣∣∫
BR

[u(x, t)− u(x, s)] dx

∣∣∣∣2 .

From the equation of u, we have

sup
t,s∈IR

∣∣∣∣∫
BR

[u(x, t)− u(x, s)] dx

∣∣∣∣ ≤ ∫∫
Q2R

|a(u)∇u∇η| dz ≤ C
Φµn

R

∫∫
Q2R

|∇g(u)| dz.

Using the inequality
∫
A u ≤

√∫
A u2|A|, we argue the same way as in (3.16) to get

9



∫∫
Q2R

|∇g(u)| dz ≤
√

2ρµnRNΦ−2
µn RN+2 +

√
(Cµ2RN )(ρΦ−2

µn RN+2)

= C(
√

µn + µ)
√

ρΦ−1
µn

RN+1.

Thus, G ≤ C(µn + µ2)ρ|QR|. Putting these together and using (3.13), we have∫∫
QR

|u− uQR
|2 dz ≤ C(ε(ρ, µn, µ) + µ2ρ) + C(µn + µ2)ρ ≤ o(ρ)µ2.

Given any ε > 0, we can choose ρ such that∫∫
QR

|u− uQR
|2 dz ≤ εµ2. (3.17)

We finally show that uQR
is not small. Clearly, (3.17) yields∫∫
QR

u2 dz ≤ (εµ2 + |uQR
|2)|QR|. (3.18)

Because |H| ≥ (1− ρ)µn implies |u|γ ≥ Cµγ (µ = (Cµn)1/γ), we see that |u| ≥ Cµ on A0.
Since |QR\A0| ≤ Cρ|QR|, we also have |A0| ≥ (1− Cρ)|QR|. Hence,∫∫

QR

u2 dz ≥
∫∫

A0

u2 dz ≥ C2µ2(1− Cρ)|QR|. (3.19)

For ε and ρ sufficiently small, (3.18) and (3.19) show that |uQR
| ≥ βµ for some constant

β > 0. This, (3.13) and (3.17) give (3.3). Thus, our proof for the alternative B is complete.

4 The degenerate (SKT) system

We prove Theorem 2.2 in this section. Let us recall the system

ut = ∇(P̄u(u, v)∇u + P̄v(u, v)∇v) + F (u, v),
vt = ∇(Q̄u(u, v)∇u + Q̄v(u, v)∇v) + G(u, v),

(4.1)

with
P̄u = a11u

α + a12v
α, P̄v = b11u

α,
Q̄v = a21u

α + a22v
α, Q̄u = b22v

α.
(4.2)

We also recall the following conditions stated in Theorem 2.2.

(P.1) α ≥ 1/2, a11 > a21, and a22 > a12. Moreover,

(a11 − a21)(a22 − a12) > b11b22. (4.3)

(P.2) We also assume that

min{2a12a22, 2a11a21} ≥ max{b11(a11 − a21), b22(a22 − a12)}. (4.4)

10



Let (u, v) be a positive solution to (4.1). We denote by Γ ⊂ IR2
+ the range of this

solution. Our goal is to find a suitable function H that satisfies the condition (H.1), (H.2)
such that Theorem 2.1 can apply here.

To begin, we set ∆(u, v) = detā(u, v) = P̄uQ̄v − P̄vQ̄u and

A(u, v) =
1√
∆

ā(u, v) =

(
Pu Pv

Qu Qv

)
. (4.5)

We also take g = 4
√

∆I2(u, v), where I2 is the 2 × 2 identity matrix. Thanks to (P.1), it is
easy to see that A is a regular matrix, and that (A.1)-(A.4) are satisfied here.

We first observe that the condition (H.2) is verified if we can find a function H that
satisfies the following conditions.

HT
u A(u)∇u∇H ≥ λ1|∇H|2, (4.6)

∇HT
u A(u)∇u ≥ λ2|∇u|2, (4.7)

|HT
u A(u)∇u| ≤ λ3|∇H|. (4.8)

These conditions amount to the positivity of the following quadratics in U, V ∈ IRN :

A1 =
(
(PuHu + QuHv) Hu − λ1Hu

2
)

U2 +
(
(PvHu + QvHv) Hv − λ1Hv

2
)

V 2

+((PvHu + QvHv) Hu + (PuHu + QuHv) Hv − 2λ1HvHu) V U,
(4.9)

A2 = (QuHuv + PuHuu − λ2) U2 + (PvHuv − λ2 + QvHvv) V 2

+(PvHuu + PuHuv + QvHuv + QuHvv) V U,
(4.10)

and

A3 =
(
λ3Hu

2 − (PuHu + QuHv)
2
)

U2 +
(
λ3Hv

2 − (PvHu + QvHv)
2
)

V 2

+(2λ3HvHu − 2 (PvHu + QvHv) (PuHu + QuHv))V U.
(4.11)

Following [10], the discriminants of A1, A3 will be nonpositive if the following first order
equation is satisfied.

Hu = f(u, v)Hv, (4.12)

where f is the solution to

−Pvf
2 + (Pu −Qv)f + Qu = 0. (4.13)

Because PvQu > 0, (4.13) has two solutions f1, f2 with f1f2 < 0. In what follows, we
denote by f = f(u, v) the positive solution of (4.13).

We first have the following simple lemma.

Lemma 4.1 Assume that H satisfies (4.12). There exist positive numbers λ1, λ3 such that
A1, A3 are positive definite.
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Proof: Following the proof of [10, Lemma 3.2], we need only choose λ1, λ3 such that
the coefficients of U2, V 2 in A1, A3 can be positive. By (4.13) and (4.12), these coefficients
in A1 can be written as

H2
vf2(Pvf + Qv − λ1), H2

v (Pvf + Qv − λ1).

Similarly, for A3, they are

H2
u(λ3 − (Pvf + Qv)2), H2

v (λ3 − (Pvf + Qv)2).

Since f > 0, we can take λ1 = 1
2 infΓ(Pvf +Qv) and λ3 = 2 supΓ(Pvf +Qv)2. These are

finite positive numbers because of (4.5) and the fact that u, v are bounded.

Thus, we are left with the positivity of A2. The rest of this section will be devoted to
finding H that solves (4.12) and makes A2 positive definite. This is also the crucial step in
proving Theorem 2.2.

To proceed, we pick a solution g of the first order equation

gu − f(u, v)gv = 0, (4.14)

and let G be any C2 differentiable function on IR. Notice that H(u, v) = G(g(u, v)) is also
a solution to (4.12).

Following the calculations of [10] (where we assumed no specification on Pu, Pv, Qu, Qv

and the choice of g,G) we introduce the following quantities.

α2 = 4(QuPv − PuQv)(fu − fvf),

α3 = [(fu + ffv)Pv + fv(Qv − Pu)]2 + 4(PuQv −QuPv)f2
v ,

β2 = 4(f2 + 1)(Pvf + Qv), β3 = 4(Qufv + Pu(fu + ffv) + Pvfv),

and
δ12 =

(
Quf + Puf2

)
gvv + Qufvgv + Pu (fugv + ffvgv) ,

δ21 = (Pvf + Qv) gvv + Pvfvgv,

δ11 = δ22 = gv
2(Qu + Puf) = gv

2(Pvf
2 + Qvf).

We recall the following elementary results that were derived in [10, Lemma 3.5]. We
state this without a proof.

Lemma 4.2 Let H̃ = G(g) and H = KH̃, where K is a constant. The discriminant of A2

is given by
Θ2 = −4λ2

2 + KΘ̃11λ2 + K2Θ̃2, (4.15)

where

Θ̃11 = (β2H̃vv + β3H̃v), Θ̃2 = (G′)2
[
G′′

G′ g
3
vα2 + (gvvgvα2 + g2

vα3)
]
. (4.16)

Furthermore, the coefficients of U2, V 2 in A2 are given by δ1 − λ2, δ2 − λ2 with

δ1 = KG′(
G′′

G′ fδ11 + δ12), δ2 = KG′(
G′′δ22

G′f
+ δ21). (4.17)
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Concerning these quantities, we compute and get

fu = −∂uPvf
2 − f∂uPu + f∂uQv − ∂uQu

σ(u, v)
, fv = −∂vPvf

2 − f∂vPu + f∂vQv − ∂vQu

σ(u, v)
.

Here σ(u, v) := (2Pvf − Pu + Qv) =
√

(Pu −Qv)2 + 4PvQu.
We first have the following simple facts about f .

Lemma 4.3 i) Setting f1 = b22
a22−a12

, and f2 = a11−a21
b11

, we have f1 ≤ f ≤ f2.

ii) fu > 0 and fv < 0.

iii) fuu + fvv = 0.

Proof: i) By substituting f1, f2 into the quadratic −PvX
2 + (Pu − Qv)X + Qu and

simplifying, we easily find that this quadratic is positive (resp. negative) at f1 (resp. f2)
thanks to (P.1). Since f1, f2 and f are positive and −Pv < 0, the claim follows.

ii) We note that f also satisfies (4.13) with P,Q being replaced by P̄ , Q̄ so that

fu = −∂uP̄vf
2 − f∂uP̄u + f∂uQ̄v

σ̄(u, v)
= fαuα−1 a11 − a21 − b11f

σ̄(u, v)
,

fv = −−f∂vP̄u + f∂vQ̄v − ∂vQ̄u

σ̄(u, v)
= −αvα−1 f(a22 − a12)− b22

σ̄(u, v)
.

From i), ii) follows.
iii) Direct calculation shows fuu + fvv = (−P̄vf

2 + (P̄u − Q̄v)f + Q̄u)/σ̄(u, v), which is
zero by (4.13). The proof is complete.

Our next step is to determine g from the (4.14), which can be solved by characteristic
methods. From [2, pp. 97-99], we know that ~x(t) = (u(t), v(t)), z(t) = g(~x(t)) and ~p(t) =
(pu(t), pv(t)) = ∇g(~x(t)) solve the following system:

~x′(t) = (1,−f),
~p′(t) = (fupv, fvpv),
z′(t) = pu − fpv = 0.

(4.18)

We choose the initial data for x, ~p on the line Υ = {(u, v) : u = v > 0}, which is nonchar-
acteristic, to be

~x(0) = (u, u); pu(0) = f(u, u), pv(0) = 1. (4.19)

A smooth solution g of (4.14) can be found by setting g to be constant along each flow
line ~x(t). In fact, we will define g on the line Υ by

g(u, v) =
∫ u

0
f(s, s)ds + v.

The following lemma provides useful properties of the solution g of the above system.
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Lemma 4.4 The followings hold for (4.18) and (4.19).

i) g is defined on the first quadrant {(u, v) : u, v > 0}.

ii) There exist C1, C2 > 0 such that C1 ≤ gv ≤ C2.

iii) There are positive constants C1, C2 such that C1(fu + v) ≤ g(u, v) ≤ C2(fu + v).

iv) gvv = −gv
fv

f .

Proof: i) Because f is bounded by Lemma 4.3, ~x(t) exists for all t ∈ IR. It is trivial to
show that the flow lines cross every point in the first quadrant so that g is well defined on
this set.

ii) Consider a characteristic curve emanating from a point (u0, v0) on Υ. From the first
equation of (4.18) and the fact that f is bounded, we easily see that there is a constant C
such that −u0 ≤ t ≤ Cv0 for u(t), v(t) to be positive. From the equation for ~p in (4.18), we
have pv(t) = exp(

∫ t
0 fv(u(s), v(s))ds. We will estimate the last integral.

Consider the case t ≥ 0. We have u(t) ≥ u0. The proof of ii) of Lemma 4.3 reveals that

|fv(u(t), v(t))| ≤ C1v
α−1

σ̄(u, v)
≤ C1v

α−1

√
4b11b22uαvα

≤ C2v
α/2−1

u
α/2
0

.

Thus, ∫ t

0
|fv|ds =

∫ t

0
|fv|

dv(s)
−f

≤ C3

∫ Cv0

0

vα/2−1

u
α/2
0

dv ≤ C4.

For t < 0, we use the fact that fvv = −fuu to get∫ t

0
|fv|ds ≤

∫ |t|

0

∣∣∣∣fuu

v

∣∣∣∣ ds ≤ C5

∫ u0

0

uα/2

v
α/2+1
0

du ≤ C6.

In both cases, we find gv = exp(
∫ t
0 fv(u(s), v(s))ds is bounded from above and below by

positive constants, and conclude the proof of ii).
iii) Using the fact that f is homogeneous, we have

g(u, v) =
∫ 1

0
g′(tu, tv)dt =

∫ 1

0
gu(tu, tv)u + gv(tu, tv)vdt

=
∫ 1

0
(f(tu, tv)u + v)gv(tu, tv)dt = (fu + v)

∫ 1

0
gv(tu, tv)dt.

This and ii) give the assertion.
iv) From the fact that gv = exp(

∫ t
0 fv(u(s), v(s))ds, we obtain

gvv =
∂

∂t
gv

∂t

∂v
= exp(

∫ t

0
fv(u(s), v(s))ds)fv(u(t), v(t))

1
−f

= −gv
fv

f
.

This concludes our proof of the lemma.

Using the above lemmas, we can tremendously simplify the quantities in Lemma 4.2. In
fact, we have
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Lemma 4.5 Let g be the solution to (4.18) and (4.19). Then,

α2 = −4(fu − fvf), α3 = (fuPv +
fvQu

f
)2 + 4f2

v , (4.20)

δ12 = Pufugv, δ21 = −Qvgvfv

f
, (4.21)

Θ̃11 = (4δ1 + 4δ2)/K. (4.22)

Proof: The first identity of (4.20) holds trivially due to the fact that PuQv−PvQu = 1.
We then use (4.13) and get

α3 = [fuPv + fv(Pvf − (Pu −Qv))]2 + 4f2
v = (fuPv +

fvQu

f
)2 + 4f2

v .

Using iv) of Lemma 4.4, we obtain

δ12 = −gv
fv

f
(Quf + Puf2) + Qufvgv + Pu(fugv + ffvgv) = Pufugv,

δ21 = −gv
fv

f
(Pvf + Qv) + Pvfvgv = −Qvgvfv

f
.

Next, we note that

β2gvv + β3gv = −4gv

[
(f2 + 1)(Pvf + Qv)

fv

f
− (Qufv + Pu(fu + ffv)− pvfv)

]
= −4gv

[
ffv((Pvf + Qv)) + Pvfv + Qv

fv

f
− fv(Qu + Puf)− Pufu − Pvfv

]
= 4Pufugv − 4

Qvfvgv

f
= 4δ12 + 4δ21.

We also observe that 4fδ11 + 4 δ22
f = β2g

2
v . Therefore,

Θ̃11 = G′[
G′′

G′ β2g
2
v + β2gvv + β3gv] = (4δ1 + 4δ2)/K.

This gives (4.22) and finishes up the proof.

We now investigate the quantity Θ̃2. We first prove the following lemma.

Lemma 4.6 gvvgvα2 + g2
vα3 < 0.

Proof: By iv) of Lemma 4.4, we see that this quantity can be written as

gvvgvα2 + g2
vα3 = g2

v

(
4
fv(fu − ffv)

f
+ (fuPv +

fvQu

f
)2 + 4f2

v

)
=

g2
v

f2

(
4ffvfu + (ffuPv + fvQu)2

)
15



=
g2
v

f2

(
4ffvfu +

(fb11fuuα + b22fvv
α)2

∆

)

=
g2
v

∆f2

(
4∆ffvfu − fuufvv(fb11u

α−1 − b22v
α−1)2

)
=

g2
v

∆f2
fufv

(
4∆f − uv(fb11u

α−1 − b22v
α−1)2

)
.

Since fufv < 0, we need only to show that 4∆f −uv(fb11u
α−1− b22v

α−1)2 > 0. This means
that the following quadratic is negative in the range of f .

Af2 − 2Bf + C ≤ 0, (4.23)

where A = b2
11k

2α−1, B = 2(a11k
α + a12)(a21k

α + a22)− b11b22k
α, C = b2

22k, and k = u/v.
Set B′ := 2a11a21k

2α + 2a22a12. By (4.3) it is clear that B ≥ B′. Thus, we need only to
show that

Af2 − 2B′f + C ≤ 0. (4.24)

Because

B′2 −AC = (2a11a21k
2α + 2a22a12)2 − b2

11b
2
22k

2α ≥ k2α(4a11a21a22a12 − b2
11b

2
22) ≥ 0

due to (4.4) and (4.3), we see that the quadratic in (4.24) has two solutions f̃1, f̃2.
By considering the cases k > 1 or 0 < k ≤ 1 and using (4.4), we easily see that

f̃2 >
B′

A
=

2a11a21k
2α + 2a22a12

b2
11k

2α−1
>

a11 − a21

b11
> f,

and

f̃1 <
C

B′ =
b2
22k

2a11a21k2α + 2a22a12
<

b22

a22 − a12
< f.

Thus, (4.24) holds for all f in its range. The proof is complete.

We are ready to give the main lemma of this section.

Lemma 4.7 Let G(g) = g2. For K sufficiently large and λ2 sufficiently small we have
Θ1 < 0.

Proof: By Lemma 4.6, we have

Θ2 = −4λ2
2 + K(β2H̃vv + β3H̃v)λ2 + K2Θ̃2 ≤ −4λ2

2 + 4(δ1 + δ2)λ2 + K2G′G′′g3
vα2.

We consider the term 4(δ1 + δ2)λ2 + K2G′G′′g3
vα2. By the choice of G, this term is

4K

[
λ2(fδ11 + 2gδ12 +

δ22

f
+ 2gδ21) + Kgg3

vα2

]
= 4K

[
λ2(fδ11 +

δ22

f
) + I

]
, (4.25)

where I := g{2δ12λ2 + 2δ21λ2 + Kg3
vα2}. We observe that

I = g

[
2Pufugvλ2 − 2

Qvfvgv

f
λ2 −Kg3

v(fu − ffv)
]

= gfugv

[
2λ2Pu −Kg2

v

]
− gfvgv

[
2
λ2Qv

f
−Kfg2

v

]
.
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Since gv, f are bounded from below by positive constants and Pu, Qv are bounded, we
easily see that the expressions in the last two brackets are bounded by negative constants
if K is sufficiently large. Furthermore, because

g ∼ (fu + v), fu ∼
uα−1

σ̄
, fv ∼

vα−1

σ̄
,

we have I ∼ −uα+vα

σ̄ ≤ −C for some positive constant C. On the other hand, it is clear
that δ11, δ22 are bounded. Consequently, the quantity in (4.25) is negative if λ2 is small.
Our claim then follows.

Lemma 4.8 δ1, δ2 are bounded from below by positive constants.

Proof: Since fu > 0 and fv < 0, we see from (4.21) that δ12, δ21 are positive. By (4.17)
and the choice of G, the lemma follows.

We conclude our paper by giving
The proof of Theorem 2.2: We now choose H(u, v) = Kg2(u, v), with g being the

solution to (4.18), (4.19). iii) of Lemma 4.4 asserts that the condition (H.1) is satisfied
with γ = 2. Lemma 4.1 shows that A1, A3 are positive definite. From Lemma 4.7 and
Lemma 4.8, we conclude that A2 is also positive definite if we choose K large and λ2 small.
Thus, (H.2) is verified and Theorem 2.1 applies here to conclude our proof.
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